• Мое избранное
  • Сохранить в Word
  • Сохранить в Word
    (альбомная ориентация)
  • Сохранить в Word
    (с оглавлением)
  • Сохранить в PDF
  • Отправить по почте
Государственная система обеспечения единства измерений. ПРЯМЫЕ ИЗМЕРЕНИЯ С МНОГОКРАТНЫМИ НАБЛЮДЕНИЯМИ. МЕТОДЫ ОБРАБОТКИ РЕЗУЛЬТАТОВ НАБЛЮДЕНИЙ. Основные положения
Документ показан в демонстрационном режиме! Стоимость: 800 тг/год

Отправить по почте

Toggle Dropdown
  • Комментировать
  • Поставить закладку
  • Оставить заметку
  • Информация new
  • Редакции абзаца

ГОСТ 8.207-76 МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ Государственная система обеспечения единства измерений ПРЯМЫЕ ИЗМЕРЕНИЯ С МНОГОКРАТНЫМИ НАБЛЮДЕНИЯМИ. МЕТОДЫ ОБРАБОТКИ РЕЗУЛЬТАТОВ НАБЛЮДЕНИЙ Основные положения State system for ensuring the uniformity of measurements. Direct measurements with multiple observations. Methods of processing the results of observations. Basic principles

Постановлением Государственного комитета стандартов Совета Министров СССР от 15 марта 1976 г. № 619 срок ведения установлен
с 01.01.1977
ПЕРЕИЗДАНИЕ. Апрель 2006 г.
Настоящий стандарт распространяется на нормативно-техническую документацию (НТД), предусмотренную ГОСТ 8.010-901) и регламентирующую методику выполнения прямых измерений с многократными независимыми наблюдениями, и устанавливает основные положения методов обработки результатов наблюдений и оценивания погрешностей результатов измерений.
____________________
1)  На территории Российской Федерации действует ГОСТ Р 8.563-96.
1. ОБЩИЕ ПОЛОЖЕНИЯ
1.1. При статистической обработке группы результатов наблюдений следует выполнить следующие операции:
исключить известные систематические погрешности из результатов наблюдений;
вычислить среднее арифметическое исправленных результатов наблюдений, принимаемое за результат измерения;
вычислить оценку среднего квадратического отклонения результата наблюдения;
вычислить оценку среднего квадратического отклонения результата измерения;
проверить гипотезу о том, что результаты наблюдений принадлежат нормальному распределению;
вычислить доверительные границы случайной погрешности (случайной составляющей погрешности) результата измерения;
вычислить границы неисключенной систематической погрешности (неисключенных остатков систематической погрешности) результата измерения;
вычислить доверительные границы погрешности результата измерения.
1.2. Проверку гипотезы о том, что результаты наблюдений принадлежат нормальному распределению, следует проводить с уровнем значимости q от 10 до 2%. Конкретные значения уровней значимости должны быть указаны в конкретной методике выполнения измерений.
1.3. Для определения доверительных границ погрешности результата измерения доверительную вероятность P принимают равной 0,95.
В тех случаях, когда измерение нельзя повторить, помимо границ, соответствующих доверительной вероятности P = 0,95, допускается указывать границы для доверительной вероятности P = 0,99.
В особых случаях, например при измерениях, результаты которых имеют значение для здоровья людей, допускается вместо P = 0,99 принимать более высокую доверительную вероятность.
2. РЕЗУЛЬТАТ ИЗМЕРЕНИЯ И ОЦЕНКА ЕГО СРЕДНЕГО КВАДРАТИЧЕСКОГО ОТКЛОНЕНИЯ
2.1. Способы обнаружения грубых погрешностей должны быть указаны в методике выполнения измерений.
Если результаты наблюдений можно считать принадлежащими к нормальному распределению, грубые погрешности исключают в соответствии с указаниями НТД.
2.2. За результат измерения принимают среднее арифметическое результатов наблюдений, в которые предварительно введены поправки для исключения систематических погрешностей.
Примечание. Если во всех результатах наблюдений содержится постоянная систематическая погрешность, допускается исключать ее после вычисления среднего арифметического неисправленных результатов наблюдений.
2.3. Среднее квадратическое отклонение σ результата наблюдения оценивают согласно НТД.
2.4. Среднее квадратическое отклонение  результата измерения оценивают по формуле
 ,
где x i  - i -й результат наблюдения;
 - результат измерения (среднее арифметическое исправленных результатов наблюдений);
n - число результатов наблюдений;
 - оценка среднего квадратического отклонения результата измерения.
3. ДОВЕРИТЕЛЬНЫЕ ГРАНИЦЫ СЛУЧАЙНОЙ ПОГРЕШНОСТИ РЕЗУЛЬТАТА ИЗМЕРЕНИЯ
3.1. Доверительные границы случайной погрешности результата измерения в соответствии с настоящим стандартом устанавливают для результатов наблюдений, принадлежащих нормальному распределению.
Если это условие не выполняется, методы вычисления доверительных границ случайной погрешности должны быть указаны в методике выполнения конкретных измерений.
3.1.1. При числе результатов наблюдений n > 50 для проверки принадлежности их к нормальному распределению по НТД предпочтительным является один из критериев: χ 2 Пирсона или ω 2 Мизеса-Смирнова.
3.1.2. При числе результатов наблюдений 50 > n > 15 для проверки принадлежности их к нормальному распределению предпочтительным является составной критерий, приведенный в справочном приложении 1.
При числе результатов наблюдений n ≤ 15 принадлежность их к нормальному распределению не проверяют. При этом нахождение доверительных границ случайной погрешности результата измерения по методике, предусмотренной настоящим стандартом, возможно в том случае, если заранее известно, что результаты наблюдений принадлежат нормальному распределению.
3.2. Доверительные границы ε (без учета знака) случайной погрешности результата измерения находят по формуле
 ,
где t - коэффициент Стьюдента, который в зависимости от доверительной вероятности P и числа результатов наблюдений n находят по таблице приложения 2.
4. ДОВЕРИТЕЛЬНЫЕ ГРАНИЦЫ НЕИСКЛЮЧЕННОЙ СИСТЕМАТИЧЕСКОЙ ПОГРЕШНОСТИ РЕЗУЛЬТАТА ИЗМЕРЕНИЯ
4.1. Неисключенная систематическая погрешность результата образуется из составляющих, в качестве которых могут быть неисключенные систематические погрешности:
метода;
средств измерений;
вызванные другими источниками.
В качестве границ составляющих неисключенной систематической погрешности принимают, например, пределы допускаемых основных и дополнительных погрешностей средств измерений, если случайные составляющие погрешности пренебрежимо малы.
4.2. При суммировании составляющих неисключенной систематической погрешности результата измерения неисключенные систематические погрешности средств измерений каждого типа и погрешности поправок рассматривают как случайные величины. При отсутствии данных о виде распределения случайных величин их распределения принимают за равномерные.
4.3. Границы неисключенной систематической погрешности Θ результата измерения вычисляют путем построения композиции неисключенных систематических погрешностей средств измерений, метода и погрешностей, вызванных другими источниками. При равномерном распределении неисключенных систематических погрешностей эти границы (без учета знака) можно вычислить по формуле