• Мое избранное
  • Сохранить в Word
  • Сохранить в Word
    (альбомная ориентация)
  • Сохранить в Word
    (с оглавлением)
  • Сохранить в PDF
  • Отправить по почте
Продукты пищевые и вкусовые. Общие указания по определению содержания азота методом Кьельдаля
Документ показан в демонстрационном режиме! Стоимость: 800 тг/год

Отправить по почте

Toggle Dropdown
  • Комментировать
  • Поставить закладку
  • Оставить заметку
  • Информация new
  • Редакции абзаца

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ПРОДУКТЫ ПИЩЕВЫЕ И ВКУСОВЫЕ Общие указания по определению содержания азота методом Кьельдаля ГОСТ 26889-86

Food-stuffs and food additives. General directions for determination of nitrogen content by the Kjeldahl method
Дата введения 1987-01-01
ИНФОРМАЦИОННЫЕ ДАННЫЕ
1. РАЗРАБОТАН Государственным агропромышленным комитетом СССР 
РАЗРАБОТЧИКИ
А.Ф.Савченко, Г.Л.Солнцева, Л.И.Изотова, Р.И.Хламова 
ВНЕСЕН Государственным агропромышленным комитетом СССР
2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 7 мая 1986 г. N 1185
3. Ограничение срока действия снято Постановлением Госстандарта N 2216 от 26.12.91
4. ПЕРЕИЗДАНИЕ. Март 2010 г.
Настоящий стандарт распространяется на пищевые продукты, содержащие белки и другие азотосодержащие органические вещества, в которых азот при минерализации в присутствии серной кислоты превращается в ионы аммония, количество которых пропорционально определяемому содержанию азота, и устанавливает общие указания по определению содержания азота в пищевых продуктах методом Кьельдаля, а также требования к аппаратуре, применяемой для проведения анализа.
Настоящий стандарт полностью соответствует СТ СЭВ 5214-85 и является обязательным методическим документом при разработке нормативно-технической документации по определению азота методом Кьельдаля.
1. СУЩНОСТЬ МЕТОДА
Метод заключается в разрушении органического вещества нагреванием с серной кислотой в присутствии катализатора, добавлении избытка гидроокиси натрия, перегонке и титровании освободившегося аммиака.
2. ПРОБА ДЛЯ АНАЛИЗА
Так как пробы многих продуктов животного и растительного происхождения (в особенности пищевых продуктов) не могут быть в условиях лаборатории доведены до абсолютно однородного состояния, рекомендуется использовать макрометоды.
Образцы для анализов, размер которых может изменяться в зависимости от предполагаемого содержания азота, должны быть показательными для пробы и содержать от 0,005 до 0,2 г азота, оптимально более 0,02 г.
Если продукт недостаточно однороден, образец для анализа должен быть большим (свыше 1 г), и при высоком содержании азота определение проводится из аликвотных частей жидкости, получаемой после разрушения органического вещества.
Образцы для анализа отвешивают или отмеривают с погрешностью не более 0,1%. При анализе вязких или пастообразных продуктов образец можно поместить в небольшую стеклянную пробирку, в колбу или на алюминиевый, бумажный или пластмассовый лист, который не содержит азота или его содержание заранее известно.
3. РАЗРУШЕНИЕ ОРГАНИЧЕСКОГО ВЕЩЕСТВА
3.1. Серная кислота
Серная кислота, используемая при анализе, практически не должна содержать соединений азота.
Если используют кислоту плотностью  1,83 - 1,84 г/см  для образца, содержащего до 1 г сухого вещества, берут не менее 12 см  кислоты и по 6-12 см  на каждый дополнительный грамм сухого вещества.
Количество кислоты следует устанавливать для каждого вида анализируемого продукта отдельно. Следует избегать избыточного количества кислоты.
3.2. Катализаторы
Необходимо делать различие между веществами, используемыми для повышения температуры кипения жидкости при разрушении органических веществ, и истинными катализаторами, которые способствуют этому разрушению. К первой группе веществ относится обычно сернокислый натрий, но предпочтительнее использовать сернокислый калий. Эти вещества вносят в достаточном количестве, чтобы повысить температуру кипения в конце процесса разрушения до 360-380 °С.
Выбор катализатора должен быть указан в стандартах на конкретный вид продукции. Можно применять различные виды катализаторов, имеющих достаточную эффективность и отвечающих требованиям контрольных испытаний (например, Hg, Se, Cu и их соединения).
Если проба имеет вид порошка, рекомендуется смешивать ее с катализатором еще в сухом виде до приливания серной кислоты.
3.3. Нагревание
Начало нагревания является критическим моментом метода Кьельдаля. Во многих случаях появляется пена, которая может подняться в горлышко колбы или даже перелиться через край. На это обстоятельство следует обратить особое внимание и вначале обеспечить умеренное нагревание. Иногда рекомендуется добавлять вещества, предотвращающие появление пены, например, парафин или вещества, изменяющие поверхностное натяжение. В этом случае следует убедиться, что эти вещества не содержат азота.
Если источник тепла интенсивно излучает инфракрасные лучи, то вещества, которые обычно вызывают пенообразование (например, углеводороды), образуют вместо этого обуглившиеся массы, которые дольше растворяются, но зато не создают сильной пены. В некоторых случаях имеет смысл затормозить нагревание, например, оставить на ночь.
Интенсивность нагревания может быть установлена по времени нагревания от 20 °С до температуры кипения известного количества воды в колбе, аналогичной той, которая используется для анализа. Нагревание считается достаточным, если выкипающая кислота конденсируется в средней части горлышка колбы Кьельдаля вместимостью 300 см . В любом случае необходимо избегать перегрева стенок колбы, не соприкасающихся с жидкостью. Этого можно достигнуть, поместив колбу на асбестовую пластину с отверстием, диаметр которого несколько меньше, чем диаметр колбы у поверхности жидкости.
Во время нагревания колбу рекомендуется помещать на подставку так, чтобы ее ось была наклонена под углом от 30 до 45° к вертикали.
Многие методики предусматривают периодическое взбалтывание содержимого колбы во время разрушения органического вещества. В большинстве случаев такое взбалтывание можно устранить, положив в колбу стеклянные шарики диаметром 5-7 мм. Когда жидкость станет прозрачной, отсутствие дальнейшего изменения цвета не всегда указывает на полное разрушение органических веществ. Азот в некоторых устойчивых соединениях, таких как лизин, триптофан или тирозин, разрушается только при продолжении нагревания еще в течение от 30 до 90 мин после того, как жидкость станет прозрачной. Обычно бывает достаточным дополнительное нагревание в течение от 30 до 40 мин. Для любого продукта с одинаковой массой пробы продолжительность нагревания зависит как от вида нагревателя, так и от используемого катализатора.
Оптимальными являются такие условия нагревания, которые позволяют получить максимальные результаты по содержанию азота при устранении всех источников погрешности.
Во время нагревания горлышко колбы может быть частично перекрыто специальной грушеобразной стеклянной втулкой или подсоединено к паропоглотительному устройству. Такое устройство не должно задерживать кислоту, выплеснувшуюся при нагревании, и не должно быть загрязнено остатками от предыдущих анализов.
Во всех случаях рекомендуется во время охлаждения защищать содержимое колбы от любых аммиачных паров, которые могут присутствовать в этот момент в лаборатории.
Следовательно, для нагревания следует использовать любое газовое или электрическое устройство, которое не вызывает перегрева стенок колбы, не соприкасающихся с жидкостью, и которое способно обеспечить такое кипение, при котором испаряющаяся кислота будет осаждаться в средней части горлышка колбы Кьельдаля обычного типа. После того как жидкость станет прозрачной и не будет больше изменять цвет, нагревание следует продолжить еще не менее 30 мин.
3.4. Осаждение ртути
Если используемый катализатор содержит ртуть, ее следует осадить перед перегонкой аммиака.
Для осаждения ртути лучше всего использовать гипофосфит натрия или калия (NaH PO ; KН РO ), которые добавляют в сухом виде после разбавления среды и перед приведением ее в щелочное состояние.
На практике 1 г гипофосфита натрия или калия хватает для осаждения 1 г ртути.
Примечание. Осаждение ртути щелочными сульфидами или тиосульфатами может привести к выделению сероводорода или двуокиси серы, если при перемешивании эти вещества будут длительно находиться в соприкосновении с кислотой. Если эти газы попадут непосредственно в дистиллят, они нейтрализуют часть аммиака, что приведет к погрешности, снижающей результат.
4. ПЕРЕГОНКА АММИАКА
4.1. Оборудование
4.1.1. Можно использовать любой перегонный аппарат, удовлетворяющий требованиям контрольных испытаний.
Различают два вида перегонных аппаратов:
а) аппараты, позволяющие осуществлять непосредственную перегонку аммиака без переноса раствора серной кислоты, содержащегося в колбе с пробой;
б) аппараты, предусматривающие перенос раствора серной кислоты целиком или частично.